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Understanding the fundamental properties of polymeric liquids remains a challenge in materials science and
soft matter physics. Here, we present a simple and computationally efficient criterion for topological con-
straints, i.e., uncrossability of chains, in polymeric liquids using the dissipative particle dynamics �DPD�
method. No new length scales or forces are added. To demonstrate that this approach really prevents chain
crossings, we study a melt of linear homopolymers. We show that for short chains the model correctly
reproduces Rouse-like dynamics whereas for longer chains the dynamics becomes reptational as the chain
length is increased—something that is not attainable using standard DPD or other coarse-grained soft potential
methods.
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I. INTRODUCTION

The static and dynamic properties of polymeric liquids
are, by and large, dominated by topological constraints. The
origin of these constraints is easy to understand: polymers
can slide past but not penetrate through each other. That is
the physical origin of the reptation model �1–3� which is the
most successful theory in describing the behavior of en-
tangled polymers. Despite active research in the field, en-
tangled polymeric liquids keep posing many challenges to
theorists �4–6�, experimentalists �7–9�, and computational
modelers �10–16�. The importance of understanding the fun-
damentals of polymeric liquids can hardly be overempha-
sized as they are one of the key issues in novel �bio�materials
science �17,18�.

The dynamics of polymer melts is typically described in
terms of the Rouse and reptation models �3�. Short chains are
able to move to any direction and are not entangled. That is
the physical origin of the Rouse model �3,19�. For longer
chains, entanglements and uncrossability of chains cannot be
ignored, and the chains become constrained to move in the
direction of the chain backbone. This motion resembles that
of a reptating snake—hence the name reptation model �1–3�.

Computer simulations offer a detailed look into polymers
and their dynamics. In classical molecular-dynamics simula-
tions the system size and simulation time pose limits as they
are typically of the order of 10 nm in linear size and around
10 ns in time. In contrast, coarse grained methods, such as
dissipative particle dynamics �DPD�, allow access to mi-
crometer and microsecond scales, see, e.g., Ref. �20�. That is

due to the soft potentials, and, like everything in life, they do
not come without a price to pay: the softness of the conser-
vative potentials allows the chains to slide through each
other. This is unphysical since in nature polymers are un-
crossable.

The fact that polymers can penetrate through themselves
in DPD simulations affects the dynamics of the system. A
direct consequence of this is that the scaling laws obtained
from DPD simulations of polymer melts �21,22� are not able
to describe entangled liquids. Whereas that is not a problem
in studying the equilibrium properties in the Rouse regime,
reptation cannot be studied using the basic DPD model with
soft interactions.

To preserve the advantages of coarse-grained models and
to correct for their deficiencies, Padding and Briels �13� re-
cently introduced an algorithm that explicitly detects and
prevents bond crossings. They consider bonds as elastic
bands that become entangled and use energy minimization to
determine the entanglement positions. This approach is gen-
eral and very promising but it is also somewhat complicated
to implement and computationally intensive �13�. To demon-
strate their approach, Padding and Briels �13,23� studied a
melt of linear homopolymers, and showed that the system
indeed exhibits reptation dynamics.

Another promising approach was put forward by Pan and
Manke �24�. They reduce the frequency of bond crossings by
introducing segmental repulsive forces between the points of
nearest contact between neighboring chains. This approach is
simple to implement but the introduction of a new force and
a related cutoff increases the computational load, and adds a
new length scale whose physical determination is somewhat
ambiguous. On the other hand, the model seems to be able to
capture both the Rouse and reptational behavior �24� like that
of Padding and Briels �13,23�.
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It is also possible to make polymers uncrossable by tuning
the conservative forces within polymer chains. Indeed, if a
certain geometric criterion is met, then it is impossible for
polymer chains to cross. In the case of hard interparticle
potentials, such as the Lennard-Jones potential, this criterion
is easy to satisfy because hard potentials have radii within
which other particles cannot penetrate. Soft potentials do not
have such radii. Therefore the polymer models used in DPD
must be constructed with care.

In this paper, we introduce a simple and generic criterion
based on simple geometrical arguments to solve the cross-
ability problem. No new forces are added, the approach is
conceptually simple and does not depend on the level of
coarse graining. Importantly, it allows easy, and if necessary
even on-the-fly, tuning between the Rouse and reptation re-
gimes. As a test, we carry out extensive DPD simulations for
polymer melts. We demonstrate that if the geometric crite-
rion mentioned above is satisfied, the system exhibits Rouse-
like behavior for short chains and reptational dynamics for
longer chains. If the criterion is not satisfied, in turn, the
dynamics is Rouse-like for all chain lengths.

Besides its applicability for studies of polymer melts, the
present approach is expected to be useful also in DPD, and
other coarse-grained simulations of biomolecular systems
such as lipid membranes especially in connection with con-
stant pressure simulations, see Refs. �25,26� and references
therein. For example, the use of soft DPD interactions �i.e.,
interpenetrable particles� and the consequent lack of en-
tanglement effects renders the lateral diffusion of lipids in
membranes somewhat unphysical. The idea proposed here
allows one to get rid of these problems to a large degree yet
still retaining the coarse-grained nature of the system.

The rest of this paper is organized as follows. In the next
section we will briefly describe the DPD method. Section III
describes the criterion for including topological constraints
in DPD, or for that matter any other soft potential, simula-
tion. In Sec. V we show results from our simulations and
compare them to other methods. Finally, we finish with a
discussion and outlook in Sec. VI.

II. DISSIPATIVE PARTICLE DYNAMICS

In DPD, the time evolution of particles is given by the
Newton’s equations of motion, and the total force acting on
particle i is given as a sum of pairwise conservative, dissi-

pative, and random forces, respectively, as F� i=�i�j�F� ij
C+F� ij

D

+F� ij
R�.
The conservative force is independent of the dissipative

and random forces. Typically it takes the form

F� ij
C = �aij�1 − rij/rc�e�ij if rij � rc

0 otherwise,
� �1�

with r�ij �r�i−r� j, rij �	r�ij	, and e�ij �r�ij /rij. The variable aij
describes the repulsion between particles i and j, and thus
produces excluded volume interactions.

The dissipative force is expressed as

F� ij
D = − ��D�rij��v� ij · e�ij�e�ij , �2�

where � is a friction parameter, �D�rij� is a weight function
for the dissipative force, and v� ij �v� i−v� j. The dissipative
force slows down the particles by decreasing kinetic energy
from them. This effect is balanced by the random force due
to thermal fluctuations,

F� ij
R = ��R�rij��ije�ij , �3�

where � is the amplitude of thermal noise, �R�rij� is the
weight function for the random force, and �ij�t� are Gaussian
random variables with 
�ij�t��=0 and 
�ij�t��kl�t���= ��ik� jl

+�il� jk���t− t��. The condition �ij�t�=� ji�t� is required for
momentum conservation. That is a necessary condition for
the inclusion of hydrodynamic interactions.

The weight functions �D�rij� and �R�rij� cannot be chosen
arbitrarily. Español and Warren �27� showed that the
fluctuation-dissipation relations �D�rij�= ��R�rij��2 and �2

=2�kBT must be satisfied for the system to have a canonical
equilibrium distribution. Here T is the temperature of the
system and kB is the Boltzmann constant. The functional
form of the weight functions is not defined by the DPD
method but virtually all DPD studies use

�D�rij� = ��R�rij��2 = ��1 − rij/rc�2 if rij � rc

0 otherwise.
� �4�

Coarse graining in DPD comes in through the soft con-
servative potential and forces �Eq. �1��. Yet also other inter-
actions can be derived through systematic coarse-graining
procedures, for example, see Refs. �28–31�. A detailed ac-
count of DPD, derivation of time and length scales, and its
applications is given by Groot �20�. An in-depth discussion
of coarse graining by Español can be found in the same
reference.

III. TOPOLOGICAL CONSTRAINTS

To take into account the topological constraints, chain
crossings must be prevented. As discussed in the introduc-
tion, there are currently two off-lattice methods �13,24� for
this purpose. It is also possible to make polymers uncross-
able by tuning the conservative forces within polymer
chains. Here, we give general directions how to do this.

First, each individual bead has a radius rmin/2 which is
impenetrable to other beads. In systems with Lennard-Jones
potentials that condition is automatically satisfied due to the
r−12 part that takes care of the Fermi exclusion principle. In
mesoscopic simulations with soft potentials that constraint
needs special attention. Second, the intramolecular bonds
have some maximum stretch, �max. By using simple geom-
etry, we can postulate that if the condition

�2rmin � �max �5�

is satisfied, any two bonds cannot cross each other, see Fig.
1. The length scales involved, i.e., rmin and �max, have a clear
physical meaning.

The obvious question is how to satisfy Eq. �5�. As an
example, let us consider DPD simulations of polymers. The
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parameters used in these simulations are often justified on
the basis of the Flory-Huggins theory �20,32�, where the key
component is the solubility as expressed by the 	 parameters.
Then, in simulations of block co-polymers, e.g., it is the
mutual repulsion between the different components that
matters—as a matter of fact, the values of the interaction
parameters aij may be derived in different ways and their
values tell only about the degree of coarse graining. The
condition set by Eq. �5� can thus be met by a proper degree
of coarse graining, complemented by a reasonable descrip-
tion for bond stretching �springs�. Indeed, �max is limited by
the type of springs used in the model. With finitely extend-
able nonlinear elastic �FENE� springs �33� that is easy to
tune as they have only finite extension after which the force
becomes infinite. With harmonic springs more care is needed
to satisfy Eq. �5� as there is no FENE-like cutoff present. We
will return to that in Sec. V.

IV. SIMULATIONS

For simplicity, and to be able to compare the model with
other simulations, we considered a melt of linear polymers in
a cubic box �three dimensional� with periodic boundary con-
ditions. To avoid finite-size effects, the linear box size L was
chosen to be at least 1.75 times the average end-to-end dis-
tance of chains. We also carried out simulations with differ-
ent box sizes to ensure that the systems were free of finite-
size effects. That was done since it is known that static
properties are affected by them �34�. The results were the
same within statistical error.

All the systems had 128 chains consisting of N mono-
mers, and no additional solvent or free monomers were
present. All monomers were chosen to be identical, and thus
the monomer mass was set equal to unity, m=1, fixing the
scale of mass. The cutoff distance rc sets the length scale for
the model. The conservative forces had the form given in Eq.
�1�, with rc=1 and aij =a for all particle pairs. The values of
a, as well as other simulation parameters used in these simu-
lations, are listed in Table I.

For the random and dissipative forces we used Eqs. �2�
and �3� with the common choices �20,32,35,36� �=4.5 and

�=3. This sets the temperature to kBT=1, and hence the time
scale is given by �mrc

2 /kBT.
The monomers were connected using harmonic springs,

i.e., F� i
S=� jk��−rij�e�ij, where the sum runs over all particles j

to which particle i is connected. The equilibrium bond length
was set to �=0.95. That particular value was chosen as it is
very near the first maximum of the radial distribution func-
tion �at the density 
=1�. The spring constant was chosen to
be k=2a. If k is much smaller, bonds are very flexible and
Eq. �5� is not satisfied. On the other hand, if k is much larger
than a, the time step �t must be decreased from the value set
by the choice of a thus decreasing the computational effi-
ciency. Another possibility would be to use FENE springs
�34� since they have finite extension.

The density was chosen to be 
=1, which is lower than
the densities typically used in DPD simulations �20,32�. The
reason for high densities is to give different repulsive inter-
actions for different particle types. This works only if par-
ticles overlap each other considerably. In the present work,
we do not need such interactions, and therefore the lower
density is sufficient. In fact, the density of 
=1 sets the
monomer-monomer coordination number near 12, which is a
typical value for real liquids.

All systems were started from random flight initial con-
figurations and they were equilibrated for 106 time steps.
After the equilibration, we simulated systems at least for 107

time steps to compute the desired quantities. Equations of
motion were integrated using the DPD-VV �velocity Verlet�
algorithm �35,37,38�.

V. RESULTS

Figure 2 shows snapshots of the chain motion during the
simulation at different times and regimes. For clarity, the
chain is projected onto two dimensions. It is immediately
clear that the motions in Figs. 2�a� and 2�b� are qualitatively
different. Figure 2�a� shows Rouse-like motion in which the
polymers are free to move in every direction, and Fig. 2�b�
represents reptation confined into a tube.

The term “Rouse-like motion” here refers to the unen-
tangled motion in order to distinguish it from the reptational
motion. It is important to note here that the model applied in
the current work is a stiff spring model resembling a freely
jointed chain model, not the classical bead and spring model
of Rouse.

A. Radial distribution function

We will now study the static properties to see the effect of
Eq. �5�. As discussed, by tuning the chain stiffness it is pos-
sible to move gradually from the Rouse regime to reptation.

TABLE I. The parameters used in this study.

a �amplitude of the conservative force� 50 100 150 200

k �spring constant� 100 200 300 400

�t �time step� 0.03 0.02 0.015 0.0125

lmaxrmin2
1

FIG. 1. Two bonds crossing each other. If Eq. �5� is satisfied,
crossings cannot occur.
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This should be reflected in both the radial distribution func-
tion and the bond-length distribution.

The radial distribution function �RDF� g�r� describes the
qualitative structure of a fluid. It is defined as g�r�=
�r� /

where 
�r� is the average density from a given particle at a
distance r. Figures 3�a� and 3�b� show the radial distribution
function g�r� and the bond-length distribution f��r� for dif-
ferent parameter sets for chains of length N=256. The arrows
in the figures indicate the set of values of rmin and �max that
satisfy Eq. �5� for the largest value of a �a=200�. As the
insets indicate, the condition starts to become violated at
small values of a. As the figures show, Eq. �5� is satisfied for
larger values of a and k. The very small nonzero values
below rmin for a=200 are due to the softness of the interpar-
ticle DPD potentials.

The above can be characterized by taking a look at the
average bond lengths and their mean-square deviations. For
aij =50 we measured 
��=0.977±0.091. As the strength of
interaction is increased we obtain 
��=0.969±0.063 for aij

=100, 
��=0.966±0.051 for aij =150, and 
��=0.96±0.044
for aij =200. The most important issue is the decrease of the
mean-square deviation as that restricts the amount of overlap

between the monomers of different chains. Importantly, for
FENE chains this can be directly controlled by using the
above measurements and RDF as a guideline and setting the
maximum extent of the chain to an appropriate value.

A comparison of the radial distribution functions shows
that the current approach allows for tuning between typical
DPD results �22,32,38� and typical molecular-dynamics
simulations using Lennard-Jones �LJ� potentials �34�. As the
bond strength is increased �a�100, k�200�, g�r� becomes
qualitatively similar to that from a LJ system.

Let us close this discussion by the following note about
the choice of the geometric criterion: Here, we used an op-
erational definition and chose 0.05 as the value �see Table II
for the values of rmin and �min for different aij satisfying the
chosen criterion�. It is also possible to try to fit the small
values of g�r� to a curve and extrapolate to the value at
which g�r�=0. Whether or not that is a feasible approach

TABLE II. The values of rmin and �min for different aij when
using the operative criterion 0.05.

aij rmin �min

50 0.598 1.266

100 0.712 1.177

150 0.763 1.138

200 0.793 1.115
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FIG. 2. The snapshots present ten superpositions of configura-
tions for a chain of length N=256 taken at times 100 apart. Gray:
times up to 500 �in DPD time units�; black: times from 500 to 1000.
�a� Rouse dynamics �a=25, k=50� and �b� reptation �a=100, k
=200�.
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FIG. 3. �a� Radial distribution function in the case of N=256.
The arrow shows the distance rmin, and the inset shows the region at
lengths shorter than rmin. As seen in the figure, the condition is well
fulfilled for the largest a. As the parameter a becomes smaller, the
deviations grow. �b� Bond-length distribution �N=256�. The inset
shows the region at values larger than �max. The arrows show a set
of rmin and �max values that satisfy Eq. �5� in the case a=200.
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depends on softness of the potentials as g�r� may approach
zero very slowly. Our operational choice is a conservative
one and guarantees correct behavior.

B. Static scaling

Next, we studied the end-to-end distance R and the radius

of gyration Rg. The former is defined as R= 	R� 	 = 	r�1−r�N	 and
the latter as Rg

2= 1
N�i=1

N �r�i−r�cm�2, where r�cm= 1
N�i=1

N r�i. In a
polymer melt, they are expected to scale as 
R�
N1/2 and

Rg�
N1/2 in both Rouse and the reptation regime. Previous
studies using soft potentials �21� and systems with more re-
alistic hard potentials �34� exhibit scaling. In Fig. 4�a� we
plot the results for the radius of gyration for different param-
eter sets. It is clear from the figure that the system exhibits
the proper scaling behavior independently of the interaction
parameters as it should.

C. Relaxation time

One of the main practical obstacles in simulations of
polymeric solutions is the long stress relaxation time. The
longest relaxation time � depends on the molecular weight
and the reptation theory predicts it to scale as �
N3. That
prediction assumes only one mechanism for relaxation, i.e.,
diffusion along the contour �1�. The Rouse model predicts a
distinctly different behavior with �
N2.

To estimate the scaling behavior, we measured the end-to-
end autocorrelation function. It is shown in Fig. 4�b� for
polymers of different length. Assuming exponential decay,
i.e.,


R� �t� · R� �0�� 
 exp�− t/�� ,

we can extract the longest relaxation time � by fitting. Figure
5�a� shows that both scaling regimes are captured properly.
Figure 5�a� illustrates one of the main results of this paper:
the simple criterion set by Eq. �5� allows an easy, physical,
and computationally efficient tuning between the Rouse re-
gime and reptation.

The scaling exponents 2 and 3 for Rouse and reptation, in
respective order, are the limiting laws. The exponents have
been frequently debated in the literature. For example, in the
entangled regime, Padding and Briels �23� found two scaling
regimes in �, one with exponent 2.8 and the other one with
exponent 3.5. The dependence �
N3.4 is experimentally ob-
served for the longest relaxation time in the entangled regime
�39�. This discrepancy is often associated with fluctuations of
the contour length of the primitive path. In a real situation,
however, the tube has a characteristic lifetime and the length
of the primitive path fluctuates since the Rouse modes con-
tinue in the direction along the primitive path. The presence
of fluctuations reduces the lifetime of the initial tube, i.e., the
maximum relaxation time �, for which reason the apparent
scaling exponent is higher than 3 when N is finite. The true
asymptotic behavior �
N3 should still hold as N→�.

Determining the value of the exponent was not the main
goal here, and thus we did not attempt to evaluate it in a high
precision—we will focus on that in a future publication. The
above simply demonstrates that it is indeed possible to in-
clude topological constraints in the soft DPD model realisti-
cally without introducing additional length scales and forces.
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FIG. 4. �a� The radius of gyration as a function of chain length
for different parameters. �b� The end-to-end vector autocorrelation
�a=100, k=200� for chains of different length.
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FIG. 5. �a� Scaling of the longest relaxation time �. There is a
crossover from Rouse scaling ��
N2� to reptation ��
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Similarly, the proper scaling limits are reached for the diffusion
coefficient D.
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D. Diffusion

The motion of a polymer, or its segments, is described by
the diffusion coefficient. Typically, one measures the center-
of-mass diffusion coefficient for a polymer chain, i.e.,

D = lim
t→�

1

6t

�r�cm�t� − r�cm�0��2� .

The scaling of D with molecular weight has been studied
intensely over the years, see, e.g., the discussion in �4�.

The theory predicts two scaling limits, D
N−1 for the
Rouse model and D
N−2 for the pure reptation model �N is
proportional to molecular weight�. Figure 5�b� shows that
both scaling regimes are found.

Considering the nature of the DPD model, it is remarkable
that both regimes are recovered. In simulations using the
plain DPD model without paying attention to the criterion
given by Eq. �5�, only Rouse scaling has been observed
�21,22� even in the case of long polymers.

As with the longest relaxation time, the exponents typi-
cally reported are between the scaling limits. Pearson et al.
�40� measured D as a function of molecular weight Mw in
polyethylene and they found that the diffusion coefficient
follows a power law D=1.65Mw

−1.98cm2/s for the entire range
from Mw=600 to Mw=12000 �g/mol�. The simulations by
Kremer and co-workers �11,34� and Padding and Briels
�13,23� confirmed this finding: the center-of-mass diffusion
coefficient scales as D
N−2 in melt.

Padding and Briels �23� compared their results to different
simulations and experiments, and found that in ethylene the
crossover between Rouse-like and reptational dynamics
takes place at molecular weight of 560 g/mol �which corre-
sponds to 40 ethylenes�. Because in Fig. 5�b� the crossover
takes place between N=40 and N=60, we can picture each
particle roughly as one ethylene unit.

VI. DISCUSSION

In this paper we have provided directions for how to con-
struct a polymer model such that one can be sure that poly-
mer chains are uncrossable. No new forces or length scales
were added. To demonstrate that this approach really pre-
vents chain crossings, we have carried out extensive DPD
simulations for polymer melts. We showed that if the crite-
rion set by Eq. �5� is satisfied, the system exhibits Rouse-like
behavior for short chains and reptational dynamics for longer
chains. If the criterion is not satisfied, in turn, the dynamics
is Rouse-like for all chain lengths. This approach can also be
used for systems of, e.g., block co-polymers with different
interactions and monomer sizes, and shear simulations. In
practice, one can always run a short test simulation, and use
g�r� and the bond length distribution �as in Figs. 3�a� and
3�b�� to verify that the criterion set by Eq. �5� is met.

There is one other issue that we need to address, namely
by tuning the chain stiffness one inevitably changes the en-
tanglement length in addition to intercrossability of chains. It

is known from previous simulations using Lennard-Jones as
well as some coarse-grained models that increasing chain
stiffness intensifies reptation �41–43�. To account for this in
order to use coarse-grained methods such as DPD with soft
potentials in a controlled way, one should use �at least� the
persistence length as a measure that should be matched be-
tween the coarse-grained and the atomistic models. Here, we
did not attempt to do that systematically.

Here, we made no attempt to determine the precise scal-
ing exponents for the diffusion coefficient or the longest re-
laxation time. In addition, there are a lot of subtleties, such
as the tube dimensions, lifetime, friction, and the plateau
modules, related to the scaling behavior �11�. A future pub-
lication will focus on them and the detailed mechanisms.

Let us next discuss particle density. In many DPD simu-
lations the typical densities have been 
=3 and 
=4,
whereas here we have used 
=1. Although our approach as
such is not restricted to any particular densities, it worth-
while to discuss this in more detail. Density arises from the
coarse-graining process itself, for DPD that has been de-
scribed in detail, e.g., by Groot �20� while Louis �44� pro-
vides a more general discussion. The usual way how DPD
particle mapping is defined is by matching compressibilities
or solubilities. That provides the interaction parameters.
Then, it is typically assumed that each bead contains the
same amount of matter. However, although having received
little attention thus far, Shillcock et al. �45,46� have shown
that for a more realistic DPD model of �in their case poly-
ethylene oxide/polyethylethylene, PEO/PEE� block co-
polymers, one needs densities that are typically around 

=1 as used here. They also showed that the densities may be
slightly different for different types of particles. Importantly,
they showed that the typical high densities used in DPD
simulations produced unphysical results, in particular for
elastic moduli and bulk densities. That implies that for mod-
eling dense polymeric systems, the appropriate densities are
likely to be around 
=1 as used here rather than the typical

=4. In general, the interaction potentials in DPD �and thus
also ultimately density� may be more realistically described
by density dependent potentials as has been shown by Pago-
nabarraga and Frenkel �47� and Warren �48�. This discussion
also shows our rationale behind choosing 
=1.

Before closing, we would like to discuss briefly the im-
portance of hydrodynamic interactions as it is a closely re-
lated issue—the Rouse model does not include hydrodynam-
ics whereas the Zimm theory recognizes the importance of
hydrodynamics which is incorporated via the Oseen tensor.
As this is fundamentally related to the behavior of polymers
in solutions and polymer melts, there has been a long-
standing interest in this issue, see, e.g., Refs. �49,50�, and
references therein. For example, in microphase separation of
block co-polymer melts it has been shown that the inclusion
of hydrodynamic interactions is critical for obtaining the
hexatic phase �51� but the same study also showed that the
formation of the lamellar phase is not dependent on hydro-
dynamics. In another very recent study, Jiang et al. �50� fo-
cused on how hydrodynamic interactions develop in polymer
solutions. Their results are very interesting, but it was still
not possible to determine how hydrodynamic interactions de-
velop under different conditions. The importance of
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hydrodynamic interactions in polymer solutions remains a
field of active research.

Finally, it is important to notice that the approach pre-
sented here is not restricted to DPD and the simple linear
conservative force in Eq. �1� but can be used at any coarse-
graining level if and when needed if interpenetration of par-
ticles becomes a problem. That is particularly important in
simulations of systems such as lipid bilayers as the bilayer
itself is relatively densely packed, and applying, e.g., con-
stant pressure condition �i.e., NpT simulation� may even alter
the morphology of the system due to particle overlaps
�25,26�. Furthermore, processes such as diffusion cannot be
described if particles are able to slide through each other.
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